REINAGEILEO RANDÜMODOG

拉拉拉拉拉拉

路

密

路路

路路

器

器

瓷

器

擬

斑斑

斑

斑

斑

斑

磁

遊遊

斑

密

器

避

路路

容容

器

器

密

遊

遊

磁

密

磁

盛

斑

斑斑

遊

*MATEHT

на изобретение

№ 2522939

СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКИХ КОМПОЗИЦИОННЫХ КАТОДНЫХ МАТЕРИАЛОВ $Li_xFe_vM_zSiO_v/C$

Патентообладатель(ли): Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" (ФГБОУ ВПО "СПбГПУ") (RU)

Автор(ы): см. на обороте

图 图 图 图 图 图

器

盗

盗

路路路路路

密

密

磁

滋

密密

密

磁

磁

遊

撥

掇

斑斑

斑

蛩

斑

斑

遊

路路

路路

路路

路

璐

遊

路

斑

遊

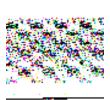
瓷

Заявка № 2013106960

Приоритет изобретения 15 февраля 2013 г. Зарегистрировано в Государственном реестре изобретений Российской Федерации 21 мая 2014 г. Срок действия патента истекает 15 февраля 2033 г.

> Руководитель Федеральной службы по интеллектуальной собственности

> > Б.П. Симонов


о интехнектуальной соос Десемя

N

ထ

ယ

ထ

(51) M_ПK *4/58* (2010.01) H01M

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(21)(22) Заявка: 2013106960/07, 15.02.2013

(24) Дата начала отсчета срока действия патента: 15.02.2013

Приоритет(ы):

(22) Дата подачи заявки: 15.02.2013

(45) Опубликовано: 20.07.2014 Бюл. № 20

(56) Список документов, цитированных в отчете о поиске: JINGYU BAI, Zhengliang Gong Nanostructured O.8Li2FeSiO4/0,4Li2SiO3/C composite cathode material with enhanced electrochemical performance for lithium-ion batteries // J. Mat. Chem., N22, 2012, p.12128-12132. RU 2444815 C1, 10.03.2012. CN 102884017 A, 16.01.2013. KR 20070078070 A, 30.07.2007. (см. прод.)

Адрес для переписки:

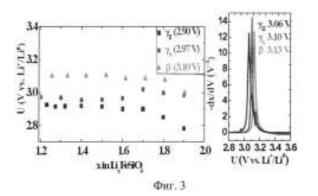
195251, Санкт-Петербург, ул. Политехническая, 29, ФГБОУ ВПО "СПбГПУ", Отдел интеллектуальной собственности

(72) Автор(ы):

Попович Анатолий Анатольевич (RU), Ван Цин Шен (RU), Разумов Николай Геннадьевич (RU)

(73) Патентообладатель(и):

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" (ФГБОУ ВПО "СПбГПУ") (RU)


(54) СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКИХ КОМПОЗИЦИОННЫХ КАТОДНЫХ MATEРИАЛОВ Li_xFe_vM_zSiO₄/C

(57) Реферат:

Изобретение относится К технологии получения нанокристаллических катодных материалов, применяемых в литий-ионных аккумуляторах, используемых автомобилестроении, машиностроении, энергетике, аэрокосмической и морской технике. Способ получения нанокристаллических композиционных катодных материалов $Li_xFe_vM_zSiO_4/C$ заключается в том, что в качестве исходных компонентов выбирают SiO2, или титаномагнетит и SiO₂, в равных количествах, которые смешивают с карбонатом Li(Li₂CO₃) в соотношении 55-70 мол. % от исходных, остальное Li₂CO₃ и FeCO₃ в равных количествах. Расплавляют порошок при температуре 1180-1280°C и охлаждают сплав до образования аморфной структуры. Размол происходит до образования двухфазной структуры, состоящей из аморфной и кристаллической (Li₂FeSiO₄) фаз. Размол аморфного сплава осуществляют с высокомолекулярным соединением полиметилметакрилата (ПММА) или сажи в количестве от 2 до 5% от сплава. Далее нагревают до температуры ≤600°C, совмещая при нагреве с модифицированием поверхности порошка углеродом, выдерживают в течение 30-60 минут, после чего охлаждают ДО комнатной температуры. Обеспечивается быстрое и дешевое получение нанокристаллических композиционных катодных материалов $Li_xFe_vM_zSiO_4/C$, которые обеспечивают увеличение удельной разрядной емкостью аккумулятора. 3 ил.,10 пр.

တ

2

(56) (продолжение): JP H03225754 A, 04.10.1991 . . .

ပ

2522939

~

Z

N

S N

N

ဖ

ယ

ဖ

FEDERAL SERVICE FOR INTELLECTUAL PROPERTY

(12) ABSTRACT OF INVENTION

(21)(22) Application: 2013106960/07, 15.02.2013

(24) Effective date for property rights: 15.02.2013

Priority:

(22) Date of filing: 15.02.2013

(45) Date of publication: 20.07.2014 Bull. № 20

Mail address:

195251, Sankt-Peterburg, ul. Politekhnicheskaja, 29, FGBOU VPO "SPbGPU", Otdel intellektual'noi sobstvennosti

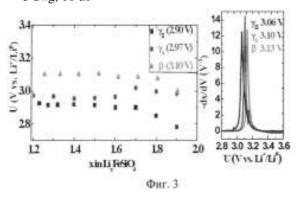
(72) Inventor(s):

Popovich Anatolij Anatol'evich (RU), Van Tsin Shen (RU), Razumov Nikolaj Gennad'evich (RU)

(73) Proprietor(s):

Federal'noe gosudarstvennoe bjudzhetnoe obrazovatel'noe uchrezhdenie vysshego professional'nogo obrazovanija "Sankt-Peterburgskij gosudarstvennyj politekhnicheskij universitet" (FGBOU VPO "SPbGPU") (RU)

(54) METHOD OF OBTAINING NANOCRYSTALLINE COMPOSITE CATHODE MATERIALS Li_xFe_vM_zSiO₄/C


(57) Abstract:

FIELD: chemistry.

SUBSTANCE: method of obtaining nanocrystalline composite cathode materials Li_xFe_vM_zSiO₄/C consists in the following: as initial components selected are SiO₂, or titanomagnetite and SiO₂, in different amounts, which are mixed with carbonate Li(Li₂CO₃) in a ratio of 55-70 mol.% of initial ones, the remaining Li₂CO₃ and FeCO₃ being in equal amounts. The powder is melted at a temperature of 1180-1280°C, and an allow is cooled until an amorphous structure is formed. Milling takes place until a two-phase structure, consisting of amorphous and crystalline (Li₂FeSiO₄) phases, is formed. Milling of the amorphous alloy is performed with highly-molecular compound of polymethylmethacrylate (PMMA) or soot in an amount from 2 to 5% of the alloy. After that, it is heated to a temperature of ≤600°C, combining in heating with modification of the powder surface by carbon, stood for 30-60 minutes, after which cooled to room temperature.

EFFECT: fast and cheap obtaining nanocrystalline composite cathode materials, which provide increase of the specific discharge capacity of an accumulator.

3 dwg, 10 ex

Изобретение относится к технологии получения нанокристаллических катодных материалов, применяемых в литий-ионных аккумуляторах, используемых в автомобилестроении, машиностроении, энергетике, аэрокосмической и морской технике.

Известен способ получения высокодисперсных катодных материалов $\text{Li}_x\text{Fe}_y\text{M}_z\text{PO}_4/\text{C}$ [Патент РФ №2444815]. Проводят смешение соединений лития с оксидом железа, а также с одним или несколькими соединениями металлов со степенью окисления 2+, 3+, 4+, 5+, являющихся поставщиками ионов-заместителей, из числа оксидов, гидроксидов или солей, соединений фосфора, содержащими PO_4^{3-} группы, и углеродсодержащими соединениями.

Исходные компоненты смешивают и активируют в механохимическом активаторе, после чего полученную смесь подвергают термической обработке при 650-800°C, охлаждают до комнатной температуры и диспергируют в механохимическом активаторе, при этом все процессы проводят в инертной атмосфере, а поверхностное модифицирование осуществляют с помощью углеродсодержащих соединений, которые одновременно участвуют в качестве восстановителя и покрывающего агента.

Недостатком способа является получение низких значений емкости. Способ достаточно дорогой, сложный и неэкологичный.

Известен способ получения катодных материалов золь-гель методом [C.Deng, S.Zhang Sinthesis and characterization of $\text{Li}_2\text{Fe}_{0.97}\text{Zn}_{0.03}\text{SiO}_4$ (M=Zn²⁺, Cu²⁺, Ni²⁺) cathode materials for lithium ion batteries // Power sources, 196 (2011), p.386-392]. В данном методе был синтезирован $\text{Li}_2\text{Fe}_{0.97}\text{Zn}_{0.03}\text{SiO}_4$. Гидрат ацетата лития, цитрат железа, ацетат цинка, тетраэтилортосиликат и лимонная кислота были использованы в качестве исходных материалов.

Гидрат ацетата лития, железа и цинка сначала растворяют в дистиллированной воде. Насыщенный водный раствор лимонной кислоты медленно добавляют к вышеуказанному раствору при перемешивании магнитной мешалкой. К образовавшемуся однородному раствору добавляют раствор этанола тетраэтилортосиликата. Под магнитной мешалкой, перемешивание было проведено при 80°С в течение 12 ч до получения прозрачного зеленоватого раствора. Затем раствор снова перемешивали магнитной мешалкой при 75°С для испарения этанола и воды. В результате влажный гель сушили в вакуумной печи при 100°С. Сухой гель затем обжигают при температуре 700°С в течение 12 ч в потоке аргона. Вместо ацетата цинка также могут быть использованы в качестве исходных материалов ацетат меди и ацетат никеля.

Недостаток: способ является затратным, а также золь-гель является дорогим по сравнению с твердофазными реакциями и реакциями в жидкой фазе.

Известен способ получения композитного материала катода $0.8 \text{Li}_2 \text{FeSiO}_4/0.4 \text{Li}_2 \text{SiO}_3$ /С и $\text{Li}_2 \text{FeSiO}_4$ /С в стехиометрическом соотношении $\text{Li}_2 \text{FeSiO}_4$ /с пониженным содержанием Fe, по сравнению с чистым $\text{Li}_2 \text{FeSiO}_4$) с применением синтеза, выбранный за прототип [Jingyu Bai, Zhengliang Gong Nanostructured $\text{O.8Li}_2 \text{FeSiO}_4/0,4 \text{Li}_2 \text{SiO}_3$ /С сомроѕіте cathode material with enhanced electrochemical performance for lithium-ion batteries // J. Mat. Chem., №22, 2012, p.12128-12132]. В качестве прекурсора был использован 0.8Li_2 FeSiO₄/0,4Li₂SiO₃/С. Для синтеза был использован золь-гель метод. 0.008 моль железного порошка и 0.016 моль лимонной кислоты смешивали в 30 мл деионизированной воды и перемешивали при 80° С. Тогда стехиометрический $\text{LiAc.}2\text{H}_2\text{O}$ (0.024 моль) и $\text{Si}(\text{OC}_2)$

 H_5)₄ (0,012 моль) растворяются и далее продолжают перемешивание еще в течение 4 часов. 0,01 моль этиленгликоля добавляют в раствор и нагревают до 120°C, выдерживают в течение 2 ч для полимеризации и сушат при 70°C в вакууме. После сушки измельчают в порошок, и прокаливают в потоке аргона при 650°C в течение 10 ч. После чего полученный материал катода смешивают с ацетиленом и связующим поливинилиденфторида (ПВДФ) в весовом соотношении 80:10:10 в шаровой мельнице со скоростью 500 рмин⁻¹ в течение 4 часов, используя в качестве растворителя N-метил-2-пиролидон (НМП). Затем суспензию наносят на алюминиевую фольгу и высушивают в вакууме при 70° С в течение 2 часов. В способе использован аморфный Li_2SiO_3 (литийионного проводника) в качестве канала передачи для улучшения ионно-литиевой диффузии в $\text{Li}_2\text{Fe-SiO}_4$ и $0.8\text{Li}_2\text{FeSiO}_4/0.4\text{Li}_2\text{SiO}_3/\text{C}$ композитном материале, который содержит активный материал катода Li₂FeSiO₄ в кристаллической фазе, окруженной аморфным Li₂SiO₃. В полученном материале образуются вторичные микронные размеры частиц с первичными нанокристаллитами (20 нм), состоящие из активного материала катода Li₂FeSiO₄ в кристаллической фазе окруженных аморфным Li₂SiO₃ и аморфным углеродом.

Недостатком способа является высокая стоимость материала, достаточно большие временные затраты способа получения, а также достаточно низкие значения удельной разрядной емкости материала.

Задачей является разработка быстрого и дешевого способа получения нанокристаллических композиционных катодных материалов ${\rm Li}_{\rm x}{\rm Fe}_{\rm y}{\rm M}_{\rm z}{\rm SiO}_4/{\rm C}$ и увеличение удельной разрядной емкости материала.

Для решения задачи предложен способ получения нанокристаллических 25 композиционных катодных материалов $\mathrm{Li_xFe_vM_zSiO_4/C}$, заключающийся в том, что в качестве исходных компонентов выбирают SiO₂, или титаномагнетит и SiO₂, в равных количествах, которые смешивают с карбонатом Li (Li₂CO₃) в соотношении 55-70 мол. % от исходных, остальное Li₂CO₃, и FeCO₃ в равных количествах. Расплавляют порошок при температуре 1180-1280°C. Далее охлаждают сплав до образования аморфной структуры. По данным рентгенофазового анализа и электронной микроскопии полученные материалы являются аморфными (фиг.1). Размол в высокоэнергонапряженной мельнице происходит до образования двухфазной структуры, состоящей из аморфной и кристаллической (Li₂FeSiO₄) фаз, количество которой увеличивается при последующих нагревах. Размол аморфного сплава осуществляют с высокомолекулярным соединением полиметилметакрилата (ПММА) или сажи в количестве от 2 до 5%, от сплава. Размер частиц после размола составляет 100-2000 нм. Далее нагревают до температуры ≤600°C, совмещая при нагреве с модифицированием поверхности порошка углеродом, выдерживают в течение 30-60 минут, после чего охлаждают до комнатной температуры.

Размол позволяет осуществить привитую полимеризацию радикалов группы СН к частичкам порошка и тем самым равномерное покрытие. ПММА используется для получения высокодисперсного состояния вещества при минимальном времени размола, что позволяет сократить время получения катодного материала. Добавление высокомолекулярного соединения в определенном количестве позволяет упростить модифицирование поверхности порошка, что приводит к улучшению удельной разрядной емкости материала катода. Использование в качестве исходных материалов оксида

кремния и смеси титаномагнетита и оксида кремния значительно удешевляет процесс.

Совокупность отличительных признаков является необходимой и достаточной для решения поставленной задачи.

Соотношение исходных веществ, 55-70 мол. % SiO_2 , выбрано, исходя из того, что данные пределы соответствуют легкоплавкой эвтектике в системе Li_2O - SiO_2 , исходя из чего интервал температуры плавления составляет 1180-1280°C, что позволяет получить аморфную структуру сплава.

5

45

При содержании ПММА <2% от сплава содержание углерода соответствует менее 0,7%, что дает низкие значения электропроводности материала и, следовательно, низкие значения удельной разрядной мощности.

При содержании ПММА >5% от сплава содержание углерода более 2,3%, что также дает низкие значения удельной разрядной емкости.

Размол в высокоэнергонапряженной мельнице происходит в течение 10-30 минут - времени, достаточного для получения двухфазной структуры, состоящей из аморфной фазы и кристаллической фазы Li2FeSiO4, благодаря чему сокращается время получения материала.

Температура термообработки ≤600°С и выдержка в течение 30-60 минут соответствует среднетемпературной модификации фазы Li_2FeSiO_4 , имеющей высокие магнитные характеристики по сравнению с низкотемпературной модификацией. Рентгенограммы различных модификаций фазы Li_2FeSiO_4 и магнитные характеристики (в том числе удельная разрядная емкость) приведены на фиг.2 и 3 соответственно.

Пример 1. Для получения нанокристаллических композиционных катодных материалов $\text{Li}_x\text{Fe}_y\text{M}_z\text{SiO}_4/\text{C}$ выбрана смесь из SiO_2 , Li_2CO_3 и FeCO_3 в соотношении SiO_2 - 55 моль. %, остальное Li_2CO_3 и FeCO_3 . Нагреваем до температуры 1180°C. Охлаждаем на воздухе до образования аморфной структуры. Осуществляем размол в высокоэнергонапряженной мельнице до образования двухфазной структуры, состоящей

из аморфной и кристаллической фаз с одновременным введением 2% ПММА от сплава. После этого полученный порошок подвергают нагреву до температуры 600° C,

выдерживают в течение 30 мин. Удельная разрядная емкость полученного катодного материала составляет 169 мА·ч/г при скорости С/10.

Пример 2. В условиях примера 1 соотношение SiO_2 - 70 мол.%, остальное Li_2CO_3 и $FeCO_3$. Удельная разрядная емкость полученного катодного материала составляет 139 мА·ч/г при скорости C/10.

Пример 3. В условиях примера 1 соотношение SiO_2 - 65 мол.%, остальное Li_2CO_3 и $FeCO_3$. Удельная разрядная емкость полученного катодного материала составляет 166 мА·ч/г при скорости C/10.

Пример 4. В условиях примера 1 размол осуществляется с добавлением полиметилматакрилата (ПММА) в количестве 5% от сплава. Удельная разрядная емкость полученного катодного материала составляет 165 мА·ч/г при скорости С/10.

Пример 5. В условиях примера 1 размол осуществляется с добавлением сажи в количестве 3% от сплава. Удельная разрядная емкость полученного катодного материала составляет 164 мА·ч/г при скорости С/10.

Пример 6. В условиях примера 1 производят нагрев до температуры 1280°С. Удельная разрядная емкость полученного катодного материала составляет 137 мА·ч/г при скорости С/10.

Пример 7. В условиях примера 1 производят нагрев до температуры 1230°С. Удельная

разрядная емкость полученного катодного материала составляет 155 м \mathbf{A} -ч/г при скорости С/10.

Пример 8. В условиях примера 2 используют смесь титаномагнетита и SiO_2 , в равных долях при общем количестве 70%, остальное Li_2CO_3 и $FeCO_3$. Удельная разрядная емкость полученного катодного материала составляет 163 мA·ч/г при скорости C/10.

Пример 9. В условиях примера 1 порошок подвергают нагреву до температуры 600° С, выдерживают в течение 45 мин. Удельная разрядная емкость полученного катодного материала составляет $162 \text{ мA} \cdot \text{ч/r}$ при скорости C/10.

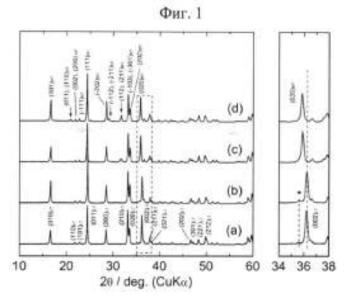
Пример 10. В условиях примера 1 порошок подвергают нагреву до температуры 550°С, выдерживают в течение 60 мин. Удельная разрядная емкость полученного катодного материала составляет 153 мА·ч/г при скорости С/10.

Предлагаемый способ позволяет сократить время и удешевить процесс получения катодного материала за счет сокращения времени размола в высокоэнергонапряженной мельнице и использования исходных дешевых материалов (титаномагнетит и ${\rm SiO}_2$) и, по сравнению с прототипом, получить нанокристаллический композиционный катодный материал ${\rm Li}_x{\rm Fe}_v{\rm M}_z{\rm SiO}_4/{\rm C}$ с одновременным увеличением удельной разрядной емкости.

Формула изобретения

Способ получения нанокристаллических композиционных катодных материалов ${\rm Li_xFe_yM_zSiO_4/C}$, заключающийся в смешивании исходных компонентов, их измельчении, дальнейшей термической обработки и охлаждении с последующим добавлением высокомолекулярного соединения, отличающийся тем, что


в качестве исходных компонентов выбирают SiO_2 , или титаномагнетит и SiO_2 , которые смешивают с карбонатом $Li(Li_2CO_3)$ в соотношении 55-70 мол.% от исходных, остальное Li_2CO_3 и $FeCO_3$ в равных количествах, после чего порошок расплавляют при температуре 1180-1280°С, после охлаждения осуществляют размол полученного сплава в высокоэнергонапряженной мельнице в течение 10-30 минут до получения двухфазной структуры, с одновременным введением в качестве высокомолекулярного соединения полиметилметакрилат или сажи в количестве 2 до 5% от сплава, далее нагревают до температуры ≤ 600 °С, совмещая с модифицированием поверхности порошка углеродом, выдерживают в течение 30-60 минут, после чего охлаждают до комнатной температуры.


35

20

40

45

Фиг. 2